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Abstract. On the basis of the density-functional theory with the use of the hypemetted-
chain approximation, a set of integral equations for the ion-ion and electron-ion radial
distribution functions (RDFs) have been derived for a liquid metal as a nucleus-electron
mixture; its liquid and electronic structures can be determined from the atomic number
Z, . This formulation is applied 1o liquid metallic sodium at temperature 100 °C; these
integral equations are solved in a self-consistent manner to obtain the ion-ion and
eleciron-ion RDFs, the electron-density distribution of a pseudoatom p(r), and the
effective interatomic potential »°%(r) at the same time. The jon-ion structure faetor of
Na at 100 °C, thus calculated, shows an excellent agreement with the experiment as well
as the ion-ion RDF; the effective interatomic patential v*® (r) giving this ion-jon ROF
indicates a quite similar behaviour to that extracted from the measured structure facior
by Reatto & ai, especially near the repuisivecore region. However, the electron—ion
RDF and the pscudoatom-electron density p(r), obtained recently from the difference
between structure factors from x-ray and neutron experiments, show large deviations from
the calculated ones; this means that to extract these quantities the experiment should be
performed in a more precise manner, For comparison, an effective interatomic potential
is oomstructed by the use of the Ashcroft pseudopotential with a core radius 0.905 A,
witich yields almost the same electron-ion RDF and the same screening charge p{r)
except near the core region in addition lo the ion—ion RDF as obtained by the full self-
consistent method; the Asheroft pseudopotential is shown to be appropriate in treating
liquid Na in contrast with liquid Li, where it is totally invalid.

1. Introduction

When studying the structure of a simple liquid metal, it is usually treated as a quasi-
one-component liquid interacting via an effective interionic interaction determined by
a pseudopotential between electron and ion. The pseudopotential method consists
of the following three steps: the construction of a pseadopotential, the evaluation of
an effective interatomic potential from the pseudopotential, and the determination of
a liquid structure from this effective potential using a liquid theory. In the second
step, the linear-response theory (the second-order perturbation) is used to calculate
the electron screening around an ion; this requires the electron-ion interaction to be
weak in the construction of effective interaction. In real liquid metals, the electron-
ion correlation is not always so weak. Liquid metallic sodium is known as a typical
system with a weak electron-ion interaction. However, it was shown by Dagens,
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Rasoit and Taylor (DRT} [1] that the non-linear effect in the screening is important
even for liquid Na in the evaluation of an effective interatomic potential and that the
pseudopotential should be built up so as to produce correctly an electron distribution
of a pseudoatom in the form of the usual linear-response expression.

On the other hand, a set of integral equations for radial distribution functions
(RDFs) among ions and eclectrons has been derived on the basis of the density-
functional (DF) theory in the quantal hypernetted-chain (QHNC) approximation [2];
the bare ion-electron interaction ?4(r) and the ionic charge Z; are to be deter-
mined self-consistently by viewing a liquid metal as a nucleus—electron mixture {3] in
this formulation. This approach is shown to give 2 non-linear pseudopotential in the
same meaning as the DRT treatment, and has already been applied to liquid metallic
lithium [4] obtaining the ion—ion structure factors in an excellent agreement with the
experiment. Also, it is well known that a usual local-pseudopotential description is
not appropriate to liquid lithium due to the absence of p-electron core in contrast
to liquid sodium. In fact, the interatomic potential calculated from Ashcroft’s model
potential is quite different from that by this QHNC formulation, and Ashcroft’s model
potential cannot give the correct structure for liquid metallic lithium.

Contrary to the fact that a simple description based on a local pseudopotential
may be possible for liquid sodivm, it is more difficult to apply the QHNC integral
equations to this system than to liquid Li, since the inner-core electronic structure is
more complicated than that of lithium. Now, we apply the QHNC formulation to liquid
metallic sodium. In contrast to a lithium jon with two core electrons, a sodium ion
has ten core electrons in liguid metallic state. Therefore, we need some modifications
to the numerical procedure to get a fine core—¢electron structure together with a liquid
structure.

Recently, Takeda erf al [5] have extracted the electron—ion ROF of liguid metallic
sodium in addition to several polyvalent metals [6], from the analysis of the difference
between structure factors measured by the neutron and x-ray scattering. However, so
far there has been no calculation of the electron—ion RDF, especially in the core region,
to be compared with these experiments. It is an important experiment to determine
the electron—ion RDF, since it involves information on the electron screening of a
pseudoatom, which is strongly related to an electron-ion pseudopotential. If the
electron-ion RDF can be experimentally obtained with a sufficient precision, we can
have a criterion to judge which pseudopotential yields more correcily an effective
interionic potential. With this respect, the QHUNC formulation can afford to give the
electron—-ion RDF including the core-region, as well as the ion-ion RDF; the non-
linear pseudopotential and effective interionic potential are also determined to be
self-consistent with these RDFs using the atomic number as the only input.

The layout of this paper is as follows. We begin in section 2 with a summary
of the QHNC integral equations for a liquid metal a5 a nucleus-clectron mixture. In
section 3 we describe some approximations applied to liquid metallic sodium and the
procedure for the pumerical calculation. The results of the QHNC formulation are
compared with experiments and other calculations in section 4. The last section is
devoted to discussion on the results.

2. Summary of formulation

As a first approach, a liqjuid metal is regarded as a mixture consisting of ions, with
charge Z; and density n;, and electrons with density n§; the ions form a classical
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fluid and the electrons behave as a quantum fluid. Of particular importance in the
evaluation of pair correlations in an ion—electron mixture is the fact that the ion-
ion and electron-ion RDFs are shown to be equal to the inhomogeneous ion ang
electron distributions around a fixed ion in a liquid metal, when an ion is a classical
particle in the sense that its coordinate and momentum are commutable with each
other. From this fact, the DF theory can give exact expressions for the ion-ion and
electron—ion RDFs g;(r) (i = I, ) using the density-distribution functions nf(r|vfl
of non-interacting systems under the effective external potentials vfj-' (r) in the forms

2
gu(r) = n{(rivi{’)/ng = exp(~Buif’(r)) 6
ga(r) = ng(rlvef) /nf. @
Here, nl(r|U) is obtained by solving the Schrédinger equation for an electron under
the external potential vefT(r), and the effective interaction v§ff(r) is represented by

the bare interaction v;;(r), the direct correlation functions (DCF) C;;(r) and the
bridge function B;(r) as follows:

VT (r) = vy(r) = Tuy(r)/B ~ By(r)/ B 3)
with

Ta(m=Y j Calr — ' ynblgu(r') — 1]dr". @)
!

From the definition of the DCFs for the ion-¢lectron mixture, the partial structure
factors S;;(Q) are shown to be expressed in terms of DCFs C;;(Q) [2] as

S1(Q) = (1 - n§C,(@)x%)/ D(Q) ®)

54(Q) =  min§Cu(Q)xa/ D(Q) = p(Q)Su(QV/ V7 )
with

D(Q) =1 - mpCrr( @)L — n§Cae(Q)xQ] — nineCH(QIxG (D)

P(Q) B n§Cu(Q)xG /(1 — n§C.L(Q)xG]- ®
Here, x, indicates the density-density response function of a non-interacting electron

gas. At this stage, note that equation (6) can be rewritten by the inverse Fourier
transform as

n3ga(r) = p(r) + 1} [ ol = #') gu(r’) ar ©

which states that the clectron-ion RDF is expressed by a superposition of neutral
pseudoatoms [7] with an electron distribution p(r). In the pseudopotential theoty,
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a pseudoatom-charge distribution p(Q) is expressed by a pseudopotential w,{Q) in
the form:

p(Q) = —n§Bwy(Q)x% /1 + n§Bre(Q)(1 - GNQNxXD] = —n§Bw,(Q)x'
(10)

which is derived by the use of the linear-response formula with the density response
function x’5' of an electron gas. Therefore, the expression (10) is valid only for a
liquid metal with a weak electron—ion interaction, while (8) is an exact expression for a
pseudoatom-charge distribution, provided that a liquid metal can be taken as an ion—
electron mixture. At this point, it should be noted that a linear-response expression
(10) can be obtained from (8) by the following replacement: C (Q) ~ —Bw,(Q)
and

Cee(Q) = =Pre (@)1 = G(Q)) = ~Br.(Q)(1 - (@) = CE(Q) (11)

which means that the Jocal-field correction (LFC) in the ion-electron mixture is ap-
proximated by that of the jellium model, G¥(Q). Since wP(Q) = -C4(@)/B
gives an exact expression for p(Q) in (8), we can think of —C,(Q)/3 a5 a non-
linear pseudopotential in the sense that it can generate a non-linear screening p(r)
in the form of the linear-response expression. Furthermore, the Ornstein-Zernike
(0Z) relations for an ion—electron mixture are described as

gi(r) = 1 = Cy(r) + T'y(r) (12}
ga{™) = 1= BC,(r) + BT y(r) (13}

which are obtained by the combined use of (5) and (6). Here, /2 denotes an operator
defined by

FolB*F(r)] = (XB)*Fl (D] = ) [ fryar  4)

for an arbitrary real number o,

In reality, we can regard the ion-electron mixture as a one-component fluid
interacting via an effective potential v*%(r), which is defined by the relation:

vif(r) = vy(r) = T(r)/B — By(r) /B = v*(r) = v(r) /B - By(r)/B (15)
with the DCF C(r) of one~component system and

1(r)y = mb [ Ol = /Digu(r') - 1 v (16)
This effective potential is explicitly written from (15) as

e
- n’gcee( Q)XE}

Bv(Q) = Bou(Q) - CA(Q)7 amn



Correlations in liguid metallic sodium 3683
owing to the relation: v(r) = I';(r) + «(r), with

ng x&
ngx% CE'(Q)

Folr(r)l = C’fx(Q)l — (18)

Moreover, it is shown that a liguid metal treated more fundamentally as a nucleus-
electron mixture can be regarded as an ion-electron mixture with explicit expressions
for a bare electron—ion interaction [3]

ZAez
r

Deg(T) = —

+ [ velln = #Dnb(r) dr' 4 pxc(nd(r) + 1) - pxo(n§) (19

and the ionic charge Z; given by

Zy=2, -/n‘g(r)dr (20)

in terms of the exchange-correlation potential uy- and bounrd-electron distribution
n2(r) B nlP(r|vef); 4(r) and 2, are to be determined in a consistent way to a
liquid structure. This definition of Z; is valid only for a simple metal, where there is
no overlapping of bound-electron distributions n2(r) among ions and no resonance
state exists. In the nucleus-electron model, the free-electron part of the density
distribution n2(r[vSF) = n®(r|vdf) + n¥(r|vEf) is taken to be the electron-ion
RDF, while the bound-electron part is thought to be composed of an ion in a liguid
metal.

3. Application to liquid metallic sodiom

A set of integral equations for the RDFS g, (r) is rewritten in the form of integral
equations for the DCFs Cj;(r) with the help of the 0Z relations (12) and (13):

Cr(r) = exp[=Bvy(r) + I'y(r) + Byu(r)] =1~ Ty(r) (21}
BCy4(r) = n{'(ribq — /B ~ Ba/B)/n§— 1 — Bl y(r) (22)

since I';;(@) can be described in terms of the DCFs C;;(Q)

La(Q) = [CulQ) - 8inixg(Cu(Q)Cee(Q) = CHQNI/ D(Q) - Cx(Q).  (23)

For equations, (21) and (22), to be a closed set of integral equations determining the
DCFs, we must introduce the following four approximations:

(i) the LFC G(Q) is taken to be that of jellium model, G¥!'(Q), in treating the
electron-electron DCF C, (@), and

(ii} the ion—ion bridge function By;(r) is approximated by Bpy(r;#) from the
Percus—Yevick equation for hard spheres of diameter o in the same spirit as the
modified HNC equation [8];

(iii) the electron-ion bridge function B,(r) is neglected; and finally the last
approximation:
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(iv) vy(r) = Z2e*/r. Here, 0 is the packing fraction defined by n = mn}o?/6,
and this parameter n in Bpy(r; n) is determined by the Lado criterion {9]:

Jlou(m - goe (27 N ar =0 4

with gpy(r) being the RDF for Percus—Yevick equation. In this calculation, we choose
the LFC G'!'(Q) to be that of Geldart and Vosko [10]:

GNQ) = ¢*/(2¢° + 49) (25)

with ¢ = Q/Qp,g = 1/(1 + 0.0155anr,), o = (4/97)/3 and r, = (3/4wn))!/3
in units of the Bohr radius ap and the Fermi wavevector (Jp. On the other hand,
the exchange-correlation potential py involved in the bare electron-ion interaction
B (r) of (19) is taken to be that proposed by Gunnarsson and Lundqvist [11]:

txc(r,) = -—-;—2—-;'-—[1 + 0.05457,In(1 + 11.4/r,}] Ryd. (26)
8

Thus, (21) and (22) with these approximations constitute a closed set of integral
equations for Cj(r) and Cy(r) to be solved self-consistently. Hereafter, we refer
to this set of integral equations as the QHNC equations.

The atomic number Z, and the jonic valency Z; of sodium in a liquid state are
11 and 1, respectively: two electrons in the 1s state, two electrons in the 2s state, and
six electrons in the 2p state forming an jon. A liquid state of Na as an ion-electron
mixture can be specified by two parameters: the plasma parameter I' = BeZ/a and
r, = a/ag, where the average spherical radius ¢ is defined by (3/4wn,)!/? with
ng = ny = n§. When the QHNC integral equations, (21) and (22), are solved by
an iterative procedure, it is important to find initial data as pear as possible to the
real solution. Liquid metallic sodium near melting point (97.9°C) has a large plasma
parameter I' ~ 200 and a large r, ~ 4; therefore, we cannot get a convergent
solution for this system because of these large state parameters, if the initial data are
not sufficiently close to the reai solution.

As the first step to obtain good initial data, we set up an approximate integral
equation from (21) and (22). For this purpose, we introduce an approximation to
g11(7) by the step function 8(r — R):

0 forr < R

27
1 forr>2 R @7

gu(rJze(r—R)={

with R being the Wigner-Seitz radius in addition to the approximation C,(r) ~
Z;e? fr. These two approximations reduce the effective electron-ion interaction (3)
to the form

v (r) = By(r) + f(r) = Tu(r)/B 28)

and alter (22) in the form

B (C'ex(r) - nﬁfﬁwf—ﬂ{e(w - R)-1) dr’)

= ngf(ri{’el +f- fellﬁ)fng -1- Bfel(r) (29)



Correlations in liquid metallic sodium 3685

with the definition of new functions
T u(r) = f CIN([r — ') mglge(r) — 1] dr’ (30)

f(r)= { Ze’[3 - (r/R)’] /2R forr< R

. 31
Ze?fr forr> R Gl

By the combined use of the Fourier transform of (29) and (30), we obtain the

following relation:
ngxuCL'(Q)

1- n5x%CLY(Q)

4re?

Q*

P (@)= (C'e:(Q)—ﬁ' nsfqle(r—R)—ll)- 32

Thus, equation (29) with (32) becomes an integral equation for C,;(r) defined by

Ca(r) = Ca(r) =5 [ B0 = R) = 1]ar’ )

since T ;(r) is expressible in terms of C(r) by means of (32). In other words,
(29) is an integral equation for the electron-ion DCF C(r) in the jellium-vacancy
model, since the effective electron-nucleus potential (28) is equal to a potential for
an electron caused by a nucleus fixed at the centre of spherical vacancy with a radius
R in the jellium background.

In order to solve the integral equation (29) for C, (), it is necessary to set up
the initial guesses for T'.;(Q) and for the effective electron-nucleus potential vSff(r).
The first guess for I';( Q) is obtained from (32) by the use of the approximation that
the electron—ion DCF C,;( Q) is replaced by the Ashcroft model potential w2C(Q):

4xe?
02

with a core radius R, = 0.905 A for liquid sodium, and the initial electron-nucleus
potential o 4(+) is approximated by the atomic potential proposed by Green et al [12]

cos(R.Q) (34)

Cy(Q) = ~Buwi(Q)=17

2
Balr) = =={(Zx - D) + 1] (35)
Q(r)=[H(e™? -1) 4+ 1] (36)

with H = 0.722}\/ %and d = 0.57ag; these two approximations afford, also, to give
the initial potential (28) generating the electron-ion RDF in (29). In this way, the
integral equation (29) can be solved iteratively from these initial data to arrive at the
initial C,;(Q), which enables us to evaluate the effective ion—ion interaction v*%(r)
from (17).

In the second step, a new ion-ion RDF is calculated from (21), which is rewritten
in the form of the integral equation for the DCF C(r) of a quasi-one-component
fluid:

C(r) = Cy(r) - £(r) = exp[-Bv*T(r) + 4(r} + Bpy(rim] -1 -~(r) (37
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with an effective interatomic potential v*(r) determined from (17) using a non-
linear pseudopotential wil(Q) = —Cy(Q)/B. Here, note that this equation is the
modified HNC equation [8] for a one-component fluid; the output C,(Q) at the first
step based on the jellium-vacancy model can be used to produce v*™(r) for the first
input potential to (37). By solving this equation, we obtain a new gy () and Cj(r)
to be used as input for the next step.

In the third step, equation (22) is regarded as constituting an integral equation
for C, (=) by thinking of g,;() and Cj;(r) as known quantities obtained from the
second step; this equation yields new C,(r) and ©,(r) to be used for the second
step in the iterative process. After several repetitions of the second and third steps,
we can obtain sufficiently convergent g, (r) and g,(r), that is Cy(r), C4(r) and
%,(r), which can be used as initial input to the QHNC integral equations, (21) and
(22), determining g;{r) and g, (r) at the same time as the final step. It is found in
this procedure that we must repeat the second and third steps so many times that we
get such initial input data as to lead to convergent gy;(r) and g, (r) simultaneously
from (21) and (22). The whole process to solve a set of integral equations, (21) and
{22) is summarized as is shown in the following fiow chart.

The first step: C4(r), ¥(r) <= jellium-vacancy model: (29)
Y
{(17) &= C (7}, Dy(r) < the third step: (22)
v¥f(r) = the second step: (37) == gy (r), Dy(r)

[
initial guesses: Cy(r), Cy(r), b y(r) = (21), (22).
When we solve (37) at the last time in this loop, the parameter n in the bridge
function Bpy (r; ) is determined by the Lado criterion [9].

In the numerical calculation, the fast Fourier transform with respect to x = r/a
is adopted to solve integral equations for the RDFs on a 1024 point mesh with an
equally-spaced interval Az = 0.025. In the evalvation of n2(r|vef'), the Schrodinger
equation is solved on a finer mesh modified from the Herman—-Skillman code [13]
to represent a fast oscillation of the wavefunction near the origin. Bound states
are calculated on the mesh consisting of 11 blocks: the first block containing 80
points with the interval &é,, the eighth block of 160 points with §; and avother
block of 40 points, using the interval doubled in each successive block according as
6, = Ax/2' (1=7,6,...,—4), respectively. On the other hand, the Schrédinger
equation for a scattering state is integrated on the mesh composed of four blocks:
the first biock involving 80 points with é;, 40 points with &,, 40 points with §, and
480 points with &,, respectively.

4. Results of calculation

In this section, the QHNC formulation [2,3] is used to calculate the structure of
liquid metallic sodium at 100°C near the melting point with the use of the procedure
described in the previous section. Liquid sodium at this temperature has the number
density ny, = 2.43 x 10~2 A~3 [14], which yields two state parameters: [' = 209.1
and r, = 4.046. The QHNC integral equations are solved in a self-consistent manner
under this condition; the packing fraction n in the bridge function Bpy(r;n) is
found to be n = 0.468 from the Lado criterion (24). It is to be noted at this point
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that if the electron-ion DCF C,j(r) is given beforehand, the QHNC formulation has
only one unknown function Cy;(r), which should be determined by (21), that is by
(37); after solving this equation, the electron-ion RDF and the screening charge of a
pseudoatom can be evaluated by the use of (6) and (8), respectively. For comparison
to the full QHNC results, we carry out this calculation for liquid metallic sodium
at same temperature adopting Ashcroft’s mode! potential w(r) to approximate

C(r):

0 for r < R,

BZe*/r forr> R, 38)

Calr) = ~Bub(r) = {

with a core radius R_ = 0.905 A [15). The packing fraction 7 in the modified HNC
equation becomes n = 0.471 for the interatomic potential from this pseudopotential;
the results obtained by the use of the pseudopotential are also given below.

Figare 1. Effective interatomic po-
tentials +*%(r) calculated for liquid
sodium at 100 °C with state param-
eters I' = 209.1 and r; = 4.046:
Full curve, the full self-consistent
QHNC method; broken curve, the use
of the jellium-vacancy model; solid
circles, the pseudopotential method
using Ashcroft’s model potential with
R; = 0.905A. The dotted curve de-
notes the potential »*%(r) extracted
from the measured stnicture factor by
-4 . L . : : Reatto et af [17], while the chained

1.5 2.0 2.5 3.0 35 curve indicates v*T (r) of Perrot and

r/a March [14].

vi'{r) (10°Ry)

In the first place, figure 1 exhibits the effective interatomic potential v*%(r)
calculated by the QHNC method (the full curve), which is consistent with the electron-
ion and ion-ion RDFS, in comparison with other results. The QHNC potential shows
a quite similar behaviour as that (the dotted curve) extracted from the measured
structure factor [16] by Reatto ef a! [17], especially near the repulsive core region;
positions of potential minimum coincide with each other. On the other hand, the
broken curve is the interatomic potential calculated at the first step by the use of
jellium—vacancy model, which is used to obtain initial data to solve the QHNC integral
equations; this treatment is shown to yield even at this stage a well approximated
potential to the full consistent QHNC potential denoted by the full curve. It should
be remarked that the procedure to evaluate this potential is essentially the same
as the DRT method [1] and that used by Perrot er a/ [14,18-20] in the sense that
a pseudopotential in the linear-response expression is built up so as to generate a
non-linear screening charge of a pseudoatom determined by the DF theory with the
belp of the jellium-vacancy model. It is also interesting that the empty-core model
potential proposed by Ashcroft produces an interatomic potential which is almost
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ocoincident with the QHNC one as denoted by the full circles in figure 1, if the core
radivs R, is taken to be 0.905 A [15]; this core radius generates almost the same
o(Q) as the QHNC electron screening of a pseudoatom as is shown in figure 5. The
chain curve in figure 1 is the result calculated by Perrot and March {14} based on
the jellium-vacancy model; their potential, however, shows a disagreement with the
QHNC one, and then they [20] propose the scaled potential v*#(ur) using a constant

= 0.9564 to get a better fit to that extracted by Reatto et al. The interatomic
potential calculated by Rasolt and Taylor [1], though at a slightly different r,, is much
shallow at the minimum with a value of —2 x 10~ Ryd, but its minimum position
coincides with the QHNC potential.

T=100%

SulQ)

Figpure 2. Ton-ion structure factor

oF S11{Q} for liquid sodium at 100°C,

tr J\/ wmev|  obtained by the QHNC calculation (full
curve), comparing with x-ray experi-

ment results of Greenfield et a! [16]

(crosses) and of Huijben and van der
Lugt [21} (fult circies). The open dr-
0 - : ; : cles indicate a small deviation of the
-1 result of the pseudopotential method

Q 4& ] from the QHNC structure factor.

Next, we display in figure 2 the ion—ion structure factor S;;(Q) by the full curve,
which is obtained from the modified HNC equation with = 0.468 for the QHNC
interatomic potential shown in figure 1. Our full consistently calculated structure
factor shows an excellent agreement with the experimental results of Huijben and
van der Lugt [21] denoted by full circles and of Greenfield et af [16] plotted by
crosses; the first peak of our result is slightly higher than that of Greenfield er al
and lower than that of Huijben and van der Lugt, and the second peak deviates
to the higher side compared with the experiments, however. The same difference
of the peak height from the experiment is seen in the structure factor obtained by
Perrot and Chabrier [20] using the scaled potential. In addition, the structure factor
calculated by the modified HNC equation with n = 0.471 for a potential from the
Asheroft pseudopotential becomes almost identical with the QHNC result with quite
small difference in the first peak as is shown by open circles in figure 2. Also, the
structure factor $;;(0) at zero wavevector, which is related with the compressibility, is
obtained as 0.031 by the QHNC calculation, while the structure factor S;;(0) from the
Ashcroft potential is 0.029; these values are to be compared with the experimental
ones: 0.024 (Greenfield & al ) and 0.026 (Huijben and van der Lugt).

Figure 3 shows the ion-ion RDFs gj;(r) obtained from the inverse Fourier trans-
form of the structure factors of figure 2. The RDF from our self-consistent calculation
represented by the full curve is compared with the RDF obtained from the experimen-
tal structure factor by Huijben and van der Lugt (full circles} and the Monte Carlo
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3 T T J T

T =100%

:;_. ] \_ Figure 3. lon-ion radial distribution
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RDF of Murphy and Klein [22] (denoted by the crosses) of which Fourier transform
gives the structure factor in good agreement with that measored by Greenfield e a!
[16]. Similarly to S;;(Q) in figure 2, the RDF obtained by the modified HNC for a
potential based on the Ashcroft potential is almost equal to the QHNC RDF; a small
deviation is seen near the first peak as shown by the open circles.

2

Figure 4. Charge distributions p{r)
of a neutral pseudoatom in lig-
uid sodium, catculated by the QHNC
method (full curve} and the pseu-
dopotential method (full circles),
in comparison with the 3s-bound-
0 ' 2 electron density (chain curve) in a
free atom. The broken curve rep-
resents the experimental result [23].

In figure 4, we show the valence-electron distribution of a neutral pseudoatom
p(r), calculated by the QHNC (the full curve) and pseudopotential (full circles) meth-
ods, in comparison with the experiment result (the broken curve) and the 3s-bound-
electron density (the chain curve) of a free atom. The QHNC p(r) plotted by the
full curve shows quite similar behaviour to the 3s-bound-electron density of a free
atom near its second node and outside the core region. In the QHNC p(r), there are
two dips near the same positions where the 3s-bound-electron density of a free atom
has two nodes, as is displayed in figure 5, where r2p(r) is plotted in units of a®n,
for the vertical axis. In figure 4, the density p(r) determined by the linear response
with the use of the Ashcroft potential is plotted by the full circles, which shows good
agreement with the QHNC screening density outside the core region. This agreement
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can be seen more clearly in figure 6, which indicates that the QHNC screening density
p(Q) is almost identical with the pseudopotential p(Q) in the Fourier-transformed
expression of p(r). In other words, we can interpret this fact as meaning that the
parameter R, in the Ashcroft model potential has been chosen so as to produce
precisely the non-linear screening. On the other hand, Takeda e af {23] extracted
the screening charge p(r) of a pseudoatom in liquid Na from the difference between
structure factors measured by x-ray and neutron diffraction experiments; their result
denoted by the broken curve behaves differently from the calculated results.

4

r/a

Figure 5. The pseudoatom radial density »2 p{r) in liquid sodium, obtained by the QuNC
method {full curve) in comparison with the 3s-bound-electron radial density of a free
sodium atom.

P Q)

Q (A
Figure 6. Fourier-transformed charge distributions p(Q) of a pseudoatom in liquid
sodium: Full curve, the QHNC method; full circles, the pseudopotential method; chain
curve, the Fourier transform of the 3s-bound-electron density of a free atom. The
experimental result [23] is plotted by the broken curve.
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Moreaover, figure 7 indicates that the electron-ion RDF g,;(r) from the experiment
by Takeda et al [S], plotted by the broken curve, shows a quite different behaviour
from those calculated by the QHNC (the full curve) and pseudopotential (the full
circles) methods, while the RDF g,(r) based on the Ashcroft potential becomes
identical with the QHNC g_;(r) outside of the core-region. In particular, the electron-
ion structure factor S,;(Q) obtained by the experiment (full circles) scems to have
no common feature to the calculated S,;(Q) in figure 8. The QHNC g_;(r), which is
determined as the valence-electron distribution around a fixed nucleus at the origin,
has also two dips at r/e ~ 0.05 and 0.27, corresponding to the dips of po(r) in
figure 5. The inner dip is not plotted in this figure due to its large value g ~ 2.4.
These dips can be associated with the existence of the bound electrons in an ion.
According to Perrot and March [14), each average of square of the distance of the
orbitals of bound electrons, /{r?}/a, is 0.04 for 1s, 0.22 for 2s and 0.23 for 2p state
in units of the average ion distance a; the outer and bigger dip in the QHNC g (r)
comes from the repulsion by Pauli’s principle due to eight electrons in the 2s and
2p states, and the inner and smaller dip is ascribed to the core repulsion due to
two electrons in the 1s state. On the other hand, the dip in the experimental g, (r)
is near 4.8, however. Therefore, it is appropriate to think that this disagreement is
caused by an inaccuracy in the experiment.

r/a

Figure 7. Electron—ion radial distribution functions g.j(r) for liquid sodium: Full
curve, the QHNC method; full circles, the pseudopotential method; broken curve, the
experimental result [5].

5. Conclusion and discussion

It is shown that the whole electronic and ionic correlations of liquid metallic sodium
at temperature 100°C can be determined by the QHNC formulation on the basis
of the nucleus-electron model using atomic number Z, as only input data. The
electronic structure of an ion in a liquid state is also determined in a comsistent way
to the surrounding ionic and electronic structure; the self-consistent potential v<ff(r)
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Figure 8. Electron-ion structure factor S,1(Q) of liquid sodium, calculated by the QHNC
methed (full curve) in comparison with the extracted result from the difference between
the neutron and x-ray experiments (5] (full circles).

under the circumstance supports only three bound energy levels (1s,2s,2p), which is
consistent with the ionic charge being Z, = 1 due to a delocalized 3s electron.

In this formulation, the RDF g,;(r) gives the screening cloud o{r) which contains
information of a non-linear pseudopotential wi(Q) = =C,;(Q)/3, which deter-
mines the effective interatomic potential v*7(r) to yield the ion-ion RDF g;(r);
thus, ali these quantities are obtained simultaneously in a self-consistent manner.
The ionic structure, S,;(Q) and gy;(+), calculated from the QHNC formulation show
excellent agreement with the experimental results, as shown in figures 2 and 3. How-
ever, the electronic structures represented by p(r) and g, (r) as well as their Fourier
transforms, p(Q) and S,(Q), show a great difference between the theoretical and
experimental results, as is seen from figures 4 to 8.

In this calculation, the LFC G(Q) and the exchange—correlation potential uyo(7,)
are introduced from outside the OHNC formulation. In this connection, it is well
known that the LFC G(@Q) plays a critical role in the determination of an interatomic
potential v*T(r) [15,24]. However, it should be noted that to date there is no
criterion by which to judge beforehand which LFC is better for the evaluation of
v*fi(r), since the LFC G(Q) involved in the expression for »*T(r) of (17) is the LFC
of the ion-electron mixture, which is different from the jellium LFC for which we have
some knowledge of the conditions to be fulfiled. To take account of the influence of
ions on the LFC, it is necessary to set up another equation for C..(r), as was done in
the calculation of liquid metallic hydrogen [2]. In any case, the steep repulsive part
of v*f(r), which essentially determines the jon-ion RDF, may remain unaltered as is
calculated in figure 1, where the QHNC potential coincides with that extracted from
the experimental structure factor by Reatto er ol [17] in the repulsive core region.
In addition, the scaled potential introduced by Perrot and Chabrier {20] to fit the
potential of Reatto et al [17] is shown to agree with the QHNC interatomic potential
near the repulsive-core region with the same position of potential minimum.

It is interesting that the Ashcroft pseudopotential with a core radins R, =
0.905 A can yield the Fourier-transformed screening cloud p(Q) which coincides
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with the QHNC p(Q) in figure 6; consequently, there is no essential difference be-
tween the effective interatomic potentials and the ion-ion and electron-ion RDFs,
whether they are calculated by the QHNC or pseudopotential method. This fact
makes a strong contrast with the case of liquid lithium [4], where the Ashcroft model
potential does not work well. This indicates that liquid sodium is the typical system
of a simple metal, where the pseudopotential theory can be applied successfully if the
non-linear screening effect is taken into account properly.

In contrast to the ionic structure, the electronic structure such as p(r) and g (7)
do not show any agreement between theoretical and experimental results, as shown
in figures 4-8. In the QHNC formulation, the electronic structure p(r) determines the
effective interatomic potential, as it is understood from the refation:

BvT(Q) = Buy(Q) — Q) Cer( Q) (39)

to give the RDF gy,(r), which shows an excellent agreement with the experimental
results. Also, the QHNC g (r) and p(r) have an inner-core structures similar to a 3s
bound state of a free atom. As a consequence, these facts can be taken as indications
that our result for the electronic structure is calculated correctly. In contrast to the
calculation, the correlation in the experimental g (r) persists over too long a range
to produce a proper atomic interaction by (39) with the use of p(Q) determined by
the relation (6). Therefore, we are forced to demand that the experiment to extract
the RDF g,(r) should be performed with more precisicn both for the neutron and
x-ray diffraction.

Finally, it should be remembered that the QHNC formulation with four approx-
imations in the present work can only be applied to a simple metal, where the
core-overlap is negligible and there is no resonant state; to take account of these
contributions, the multi-centre problem to evaluate a core-overlap effect must be
solved in a coupled manner with the single-centre problem to determine the RDFs
[25].
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