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I. Phys.: Condens Matter 4 (1992) 3619-3694. Printed in lhe UK 

Ion-ion and electron-ion correlations in liquid metallic 
sodium calculated from the nucleus-electron model 
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t Department of Physics, Faculw of Science, Kanzzawa Universiw, Kanazawa, lshikawa 
920. iapan 
$Department of Physics, Japan Atomic Energy Resarch Institute, lbkai, lbaraki 319-11, 
Japan 

Received 28 October 1991 

AbstracL On the basis of the density-functional theory with lhe use of the hypernelted- 
chain approximation, a set of integral equations for the ion-ion and electronion radial 
distribution functions (RDFs) have teen derived lor a liquid metal as a nucleus-electron 
mixture; its liquid and elecmnic swctures can be determined f" the atomic number 
2,. This formulation is applied 10 liquid metallic sodium at temperature 100 V, these 
integral equations are solved in a self-consistent manner to obtain the ion-ion and 
eleclron-ion RDFS, the electron-density distribution of a pseudoatom p(r), and the 
effective interatomic potential &(r)  at the Same time. m e  ion-ion S~NC~UK factor of 
Na at 100 "$ thus calculated, show an unl lent  agreement with the experiment as well 
ar the ion-ion RDF, the effective interammic potential velf ( r )  giving this ion-ion RDF 
indicates a quite similar behaviour to that utracted from the measured swcture factor 
by Reatto a d, espeeialfy near the repulsiveare region. However, the elenmn-ion 
RDF and lhe pseudoatom-electron density p(r), obtained recenlly f" lhe difference 
beween structure factors ftom x-ray and neutron experiments, show large deviations from 
lhe calculated ones; this means lhal lo utracl lhese quantities the experiment should be 
performed in a more precise manner. For comparison, an effective interatomic potential 
B mnstrueted by the use of the Ashcroft pseudopotential with a mre radius 0.905 A, 
which )ields almost lhe Same electron-ion RDF and the Same screening charge p(r) 
ucept near the mre region in addition to the ionion RDF as obtained by the full self- 
mnsistenl method, the Ashcroft pseudopotential is  shown IQ be appropriate in veating 
liquid Na in mntrast with liquid ti. where it is totally invalid. 

1. Intmduction 

When studying the structure of a simple liquid metal, it is usually treated as a quasi- 
one-component liquid interacting via an effective interionic interaction determined by 
a pseudopotential between electron and ion. The pseudopotential method consists 
of the following three steps: the construction of a pseudopotential, the evaluation of 
an effective interatomic potential from the pseudopotential, and the determination of 
a liquid structure from this effective potential using a liquid theory. In the second 
step, the linear-response theory (the second-order perturbation) is used to calculate 
the electron screening around an ion; this requires the electron-ion interaction to be 
weak in the construction of effective interaction. In real liquid metals, the electron- 
ion correlation is not always so weak Liquid metallic sodium is known as a typical 
system with a weak electron-ion interaction. However, it was shown by Dagens, 
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Rasolt and 2,ylor (DRT) [l] that the non-linear effect in the screening is important 
even for liquid Na in the evaluation of an effective interatomic potential and that the 
pseudopotential should be built up so as to produce correctly an electron distribution 
of a pseudoatom in the form of the usual linear-response expression. 

On the other hand, a set of integral equations for radial distribution functions 
(RDFS) among ions and electrons has been derived on the basis of the density- 
functional (DF) theory in the quantal hypernetted-chain (QHNC) approximation [2]; 
the bare ion-electron interaction CeI(r) and the ionic charge Z, are to be deter- 
mined self-consistently by viewing a liquid metal as a nucleus-electron mixture [3] in 
this formulation. This approach is shown to give a non-linear pseudopotential in the 
same meaning as the DRT treatment, and has already been applied to liquid metallic 
lithium [4] obtaining the ion-ion structure factors in an excellent agreement with the 
experiment. Also, it is well known that a usual local-pseudopotential description is 
not appropriate to liquid lithium due to the absence of pelemon core in contrast 
to liquid sodium. In fact, the interatomic potential calculated from Ashcroft’s model 
potential is quite different from that by this QHNC formulation, and Ashcroft’s model 
potential cannot give the correct structure for liquid metallic lithium. 

Contrary to the fact that a simple description based on a local pseudopotential 
may be possible for liquid sodium, it is more di@cult to apply the QHNC integral 
equations to this system than to liquid Li, since the inner-core electronic structure is 
more complicated than that of lithium. Now, we apply the QHNC formulation to liquid 
metallic sodium. In contrast to a lithium ion with two core electrons, a sodium ion 
has ten core electrons in liquid metallic state. Therefore, we need some modifications 
to the numerical procedure to get a fine coreelectron structure together with a liquid 
structure. 

Recently, 2,keda er af [5l have extracted the electron-ion RDF of liquid metallic 
sodium in addition to several polyvalent metals 161, from the analysis of the difference 
between structure factors measured by the neutron and x-ray scauering. However, so 
far there has been no calculation of the electron-ion RDF, especially in the core region, 
to be compared with these experimentr. It is an important experiment to determine 
the electron-ion RDF, since it involves information on the electron screening of a 
pseudoatom, which is strongly related to an electron-ion pseudopotential. If the 
electron-ion RDF can be experimentally obtained with a sufficient precision, we can 
have a criterion to judge which pseudopotential yields more correctly an effective 
interionic potential. Wtth this respect, the QHNC formulation can afford to give the 
electron-ion RDF including the core-region, as well as the ion-ion RDF; the non- 
linear pseudopotential and effective interionic potential are also determined to be 
self-consistent with these RDFS using the atomic number as the only input. 

The layout of tais paper is as follows. We begin in section 2 with a summary 
of the QHNC integral equations for a liquid metal as a nucleus-electron mixture. In 
section 3 we describe some approximations applied to liquid metallic sodium and the 
procedure for the numerical calculation. ?he results of the QHNC formulation are 
compared with experiments and other calculations in section 4. The last section is 
devoted to discussion on the results. 

M Ishirobi and .I Chihara 

2. Summary of formulation 

As a first approach, a li uid metal is regarded as a mixture consisting of ions, with 
charge Z, and density no, 9 and electrons with density n;; the ions form a classical 
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fluid and the electrons behave as a quantum fluid. Of particular importance in the 
evaluation of pair correlations in an ion-electron mixlure is the fact that the ion- 
ion and electron-ion R D F ~  are. shown to be equal m the inhomogeneous ion and 
electron distributions around a fixed ion in a liquid metal, when an ion is a classical 
particle in the sense that iS coordinate and momentum are commutable with each 
other. From this fact, the DF theory can give exact expressions for the ion-ion and 
electron-ion RDFS si,(.) (i = 1,e) using the density-distribution functions np(rIu;y) 
of non-interacting systems under the effective external potentials u;T(r) in the forms 
PI 

Here, n:(rlU) is obtained by solving the Schriidinger equation for an electron under 
the external potential u:F(r), and the effective interaction u ; ~ ( T )  is represented hy 
the bare interaction uiI(v), the direct correlation functions (DCF) C,,(r) and the 
bridge function Bil(r) as follows: 

r i I ( T )  = T / C i l ( l r  -~ ' l )nb[g , , ( r ' )  - 11dr'. (4) 

From the definition of the D m  for the ion-electron mixture, the partial structure 
factors Sij (Q) are shown to be expressed in terms of DcFs Cij (Q) [Z] as 

s,,(Q) = (1 - G , ( Q ) x ; ) / D ( Q )  (5) 

s,,(Q) = & G ~ , , ( Q ) x ; / ~ ( Q )  = P(Q)WQ)/G (6) 

with 

W Q )  - nbcii(Q)1[1- %CdQ)x;I - ~E~CZI(Q)X; (7) 

(8) p ( Q )  nEC,i(Q)x;/[l - GCdQ)x$I. 

Here, & indicates the density-density response function of a non-interacting electron 
gas. At this stage, note that equation (6) can be rewritten by the inverse Fourier 
transform as 

nEs,l(r) = dr) t ~ ~ / ~ ( l ~ - ~ ' l ) g l l ( ~ ' ) d ~ '  (9) 

which states that the electron-ion RDF is expressed by a superposition of neutral 
pseudoatoms [7l with an electron distribution p( r). In the pseudopotential theory, 
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a pseudoatom-charge distribution p(Q)  is expressed by a pseudopotential wb(Q) in 
the form: 

p ( Q )  = -nEPwb(Q)x$/[l+ nVv,,(Q)(1 - Q'"(Q))x$I = -n~Pwb(Q)$" 

M Ishitobi and J Chiharn 

(10) 

which is derived by the me of the linear-response formula with the density response 
function 2;'' of an electron gas. Therefore, the expression (10) is d i d  only for a 
liquid metal with a weak electron-ion interaction, while (8) is an exact expression for a 
pseudoatom-charge distribution, provided that a liquid metal can be taken as an ion- 
electron mixture. At this point, it should be noted that a linear-response expression 
(IO) can be obtained from (8) by the foUowing replacement: C,,(Q) U -Pwb(Q) 
and 

C A Q )  E -Pv , (Q)(I  - G ( Q ) )  U -Pv,,(Q)(l - Qe'l(Q)) E CZ"(Q) (11) 

which means that the local-field correction (LFC) in the ion-zlectron mixture is ap- 
proximated by that of the jellium model, Oell(Q).  Since wgl(Q) s -C , , (Q) /p  
gives an exact expression for p(Q)  in (S), we can think of -C, , (Q)/P as a non- 
linear pseudopotential in the sense that it can generate a non-linear screening p( .) 
in the form of the linear-response expression. Furthermore, the Omstein-Zernike 
(02) relations for an ion-electron mixture are described as 

which are obtained by the combined use of (5) and (6). Here, B denotes an operator 
defined by 

F~[k*.f(T)l E ( X $ ) O I F ~ [ f ( T ) ]  = ( X $ ) " / e " " / ( ~ )  (14) 

for an arbitrary real number a. 

interacting via an effective potential ueff(?),  which is defined by the relation: 
In reality, we can regard the ion-electron mixture as a one-component Ruid 

V 3 . I  = ~ r ( 7 )  - riAr)/P -WT)/P E @(.) - Y ( ~ ) / P -  % P ) / P  (15) 

with the DCF C ( r )  of one-component system and 

y( P) E ni / C( 11 - r'l)[gII( T ' )  - 11 dr'. 

This effective potential is explicitly written from (15) as 
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owing to the relation: Y ( T )  = rlr(T) + K ( T ) ,  with 

Moreover, it is shown that a liquid metal treated more fundamentally as a nucleus- 
electron mixture can be regarded as an ion-electron mixture with explicit expressions 
for a bare electron-ion interaction [3] 

Gel( T )  = - - r t / u ~ . ( I ~ - r ' l ) n ~ ( ~ ' ) d r ' + ~ ~ ~ ~ ( n c b ( ~ ) + n i ) -  pxc(ni) (19) 

and the ionic charge 2, given by 

in terms of the exchange-correlation potential fixe and bound-electron distribution 
a:(.) n2b(~Iusff); & ( T )  and 2, are to be determined in a consistent way to a 
liquid structure. This definition of 2, is valid only for a simple metal, where there is 
no overlapping of bound-electron distributions n , " (~ )  among ions and M resonance 
state exists. In the nucleus-electron model, the free-electron part of the density 
distribution nz(~Iu:F) = nzb(rIu$) t n:'(vlu:F) is taken to be the electron-ion 
RDF, while the bound-electron part is thought to be composed of an ion in a liquid 
metal. 

3. Application to liquid metallic sodium 

A set of integral equations for the RDFS g i r ( r )  is rewitten in the form of integral 
equations for the DCFS CiI(v) with the help of the 02 relations (12) and (13): 

(21) 

(22) 

CII(T) = exP[-@%(r) -I- rIr(') + 4 1 ( 7 - ) 1  - 1 - rII(r) 

hce1(v) = ~ ' ( V I G ~  - red@ - BeI/P)/ni - 1 - hreI(r) 
since r i I (Q)  can be described in terms of the DCFS Cij(Q) 

rdQ) = [CidQ) - 4 1 G ~ ~ ( c I ~ ( Q ) c e , ( Q )  - C%Q))l /o(Q) - CiI(Q). (23) 

For equations, (21) and (22), to be a closed set of intepal equations determining the 
DCFs, we must introduce the following four approximations: 

(i) the LFC G(Q) is taken to be that of jellium model, @I(Q), in treating the 
electron-electron DCF Gee( Q), and 

(ii) the ion-ion bridge function BII(r )  is approximated by BpY(r; q) from the 
Percus-Yevick equation for hard spheres of diameter D in the same spirit as the 
modified HNC equation [SI; 

(Yu) the electron-ion bridge function Be1( T )  is neglected; and fmally the last 
approximation: 
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(iv) uII(r) U Z:eZ/r. Here, 1) is the packing fraction defined by q 
and this parameter 1) in Bpy(r; q) is determined by the Lado criterion [9]: 

nnhu3/6, 

with gpy(r) being the RDF for Percus-Yevick equation. In this calculation, we. choose 
the LFC @I1( Q) to be that of Geldart and Vosko [lo]: 

Qe”(Q) = q2/ (2qz  + 49) (25) 

with q = Q/Qr,g = 1/(1 + 0.0155a?rrS),a = (4/9r)’13 and rs = (3/4?rn&)’I3 
in units of the Bohr radius aB and the Fermi wavevector QF. On the other hand, 
the exchangecorrelation potential pXc involved in the bare electron-ion interaction 
&(r)  of (19) is taken to be that proposed by GUMaISSOII and Lundqvist [ll]: 

(26) 
2 

pxc(rs )  = -e[l + 0.0545rSln(l + 11.4/r8)] Ryd. 

Thus, (21) and (22) with these approximations constitute a closed set of integral 
equations for CII(r) and C,(r) to be solved self-consistently. Hereafter, we refer 
to this set of integral equations as the QHNC equations. 

The atomic number Z, and the ionic mlency Z, of sodium in a liquid state are 
11 and 1, respectively: two electrons in the 1s state, two electrons in the 2s state, and 
six electrons in the Zp state forming an ion. A liquid state of Na as an ion-electron 
mixture can be speciIied by two parameters: the plasma parameter l? E @e2/a  and 
r, E a / a e ,  where the average spherical radius a is defined by (3/4nn,)’13 with 
no = nb = n;. When the QHNC integral equations, (21) and (z), are solved by 
an iterative procedure, it is important to find initial data as near as possible to the 
real solution. Liquid metallic sodium near melting point (97.9oC) has a large plasma 
parameter r - 200 and a large rs - 4; therefore, we cannot get a convergent 
solution for this system because of these large state parameters, if the initial data are 
not sufficiently close to the real solution. 

As the first step to obtain good initial data, we set up an approximate integral 
equation from (21) and (22). For this purpose, we introduce an approximation to 
g,,(r) by the step function O(r - R): 

with R being the WignerSeitz radius in addition to the approximation CeI(r) U 

Zlez/r. These two approximations reduce the effective electron-ion interaction (3) 
to the form 

&(.) = %dr) + f ( r )  - F e , ( 4 / P  (28) 

and alter (22) in the form 
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with the delbition of new functions 

Z1e2[3 - ( T / R ) ~ ] / ~ R  for r < R 
for i-2 R ’ 

By the combined use of the Fourier transform of (29) and (30), we obtain the 
following relation: 

Thus, equation (29) with (32) becomes an integral equation for Get(r) defined by 

since Fe,(?-) is expressible in terms of ce,(r) by means of (32). In other words, 
(29) is an integral equation for the electron-ion DCF Cet(r) in the jellium-vacancy 
model, since the effective electron-nucleus potential (28) is equal to a potential for 
an electron caused by a nucleus tixed at the centre of spherical vacancy with a radius 
R in the jellium background. 

In order to solve the integral equation (29) for Ge1(~), it is necessary to set up 
the initial guesses for re,( Q) and for the effective electron-nucleus potential vEF( r) .  
The first guess for Fe,( Q) is obtained from (32) by the use of the approximation that 
the electron-ion DCF C,,(Q) is replaced by the Ashcroft model potential wf(Q):  

with a core radius R, = 0.905 8. for liquid sodium, and the initial electron-nucleus 
potential Gd(r) is approximated by the atomic potential proposed by Green el a1 [12] 

(35) 

(36) 

e’ 
r fie,(r) = --[(Z* - l)O(r) + 11 

O ( r )  E [H(e’Id - 1) + 11-l 

with H = 0.722i’3 and d = 0.57aB; these two approximations afford, also, to give 
the initial potential (28) generating the electron-ion RDF in (29). In this way, the 
integral equation (29) can be solved iteratively from these initial data to arrive at the 
initial C,,(Q), which enables us to evaluate the effective ion-ion interaction veR(r) 
from (17). 

In the second step, a new ion-ion RDF is calculated from (21). which is rewritten 
in the form of the integral equation for the DCF C(r) of a quasi-onecomponent 
fluid 

C(r) E C,,(T) - (37) = exp[-Wff(r) + - / (r)  + Bpy(r; pl)] - 1 - r(r) 
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with an effective interatomic potential ueR(r )  determined from (17) using a non- 
linear pseudopotential w;' (Q)  = -C,(Q)/P. Here, note that this equation is the 
modified HNC equation [SI for a onecomponent h i d ;  the output Gel( Q) at the first 
step based on the jellium-vacancy model can be used to produce U''( r )  for the first 
input potential to (37). By solving this equation, we obtain a new gII(r) and CII(r) 
to be used as input for the next step. 

In the third step, equation (22) is regarded as constituting an integral equation 
for C,(r) by thinking of gI1(r) and CII(r) as known quantities obtained from the 
second step; this equation yields new Cel(r) and G4(r) to be used for the second 
step in the iterative process. After several repetitions of the second and third steps, 
we can obtain sufiiciently convergent gII(r) and gel(?-), that is CIl(r), C,,(r) and 
Gel(?-), which a n  be used as initial input to the QHNC integral equations, (21) and 
(22), determining gll(r) and g e l ( r )  at the same time as the final step. It is found in 
this procedure that we must repeat the second and thud steps so many times that we 
get such initial input data as to lead to convergent glI(r) and gel(?-) simultaneously 
from (21) and (22). The whole process to solve a set of integal equations, (21) and 
(22) is summarized as is shown in the following flow chart 
The fust step: CeI(r),Ge1(r) 

U 

U li 

M Ishitobi and .I Chihara 

jellium-vacancy model: (29) 

(17) (= c e l ( ~ ~ , c e l ( ~ )  e the third step: (22) 

veff(r)  e t h e  second step: (37) =+ gI1(T),Gel(r) 
U 

initial guesses: CIl( r ) ,  Cel(r), Ge1( r )  
When we solve (37) at the last time in this loop, the parameter q in the bridge 
function BPy(r; q) is determined by the Lado criterion [9]. 

In the numerical calculation, the fast Fourier transform with respect to I = r/a 
is adopted m solve integral equations for the RDFs on a 1024 point mesh with an 
equally-spaced interval A z  = 0.025. In the evaluation of n;(rlv$), the Schrodinger 
equation is solved on a Iiner mesh modified from the Herman-Skillman code [13] 
to represent a fast oscillation of the wavefunction near the origin. Bound states 
are calculated on the mesh consisting of 11 block the first block containing 80 
points with the interval 6,, the eighth block of 160 points with 6, and another 
block of 40 points, using the interval doubled in each successive block according as 
6, E Ax/2' ( 1  = 7,6,. . . , -4), respectively. On the other hand, the Schrodinger 
equation for a scattering state is integrated on the mesh composed of four blocks: 
the fust block involving 80 points with 6,, 40 points with 6,, 40 points with 6, and 
480 points with 6,. respectively. 

(21), (22). 

4. Results of calculation 

In this section, the QHNC formulation [2,3] is 'used to calculate the structure of 
liquid metallic sodium at 1 M ) T  near the melting point with the use of the procedurc 
described in the previous section. Liquid sodium at this temperature has the number 
density no = 2.43 x A-3 [14], which yields two state parameters: r = 209.1 
and T. = 4.046. The QHNC integral quatiom are solved in a self-consistent manner 
under this condition; the packing fraction q in the bridge function B P y ( r ; v )  is 
found to be 7 = 0.468 from the Lado criterion (24). It is to be noted at this point 
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that if the elecaon-ion DCF CeI(r) is given beforehand, the QHNC formulation has 
only one unlmown function CII(r), which should be determined by (21), that is by 
(37); after solving this equation, the electron-ion RDF and the screening charge of a 
pseudoatom can be evaluated by the use of (6) and (S), respectively. For comparison 
to the fun QHNC ESults, we cany out this calculation for liquid metallic sodium 
at same temperature adopting Ashcroft's model potential wfc(r) U) approximate 
Cedy) :  

with a core radius 8, = 0.905 A [15]. The packing fraction I) in the modified HNC 
equation becomes q = 0.471 for the interatomic potential from this pseudopotential; 
the results obtained by the use of the pseudopotential are also given below. 

Figuw 1. Effative interatomic po- 
tentials @(r) calculated for liquid 
sodium at 10053 with state param- 
elem r = 209.1 and r, = 4.046 
Full cuwe, the full self-mnsistent 
QHNC method; troken awe,  Ihe use 
of the jellium-vacancy model; solid 
circles, the pseudopotential method 
using Ashcmn's model potential with 
l& = o . 9 0 5 h  The dotted NNC de- 
notes the potential ueR (r) extracted 
hom the measured stmawe factor by 
Reatto et al [17], while the chained 

1.5 2.0 2.5 3.0 3.5 cume indicates U''(?) of Pemt and 
r / o  March 1141. 

In the first place, figure 1 exhibits the effective interatomic potential ~ ' ~ ( 7 )  

calculated by the QHNC method (the full curve), which is consistent with the elcctron- 
ion and ion-ion RDFs, in comparison with other results. The QHNC potential shows 
a quite similar behaviour as that (the dotted curve) extracted from the measured 
structure factor [16] by Reatto et ul [17], especially near the repulsive core region; 
positions of potential minimum coincide with each other. On the other hand, the 
broken curve is the interatomic potential calculated at the first step by the use of 
jellium-vacancy model, which is used to obtain initial data to solve the QHNC integral 
equations; this treatment is shown to yield even at this stage a well approximated 
potential to the full consistent QHNC potential denoted by the full curve. It should 
be remarked that the procedure to evaluate this potential is essentially the same 
as the DRT method [I] and that used by Perrot er ul [14,18-20] in the sense that 
a pseudopotential in the linear-response expression is built up so as to generate a 
non-linear screening charge of a pseudoatom determined by the DF theory with the 
help of the jellim-vacancy model. It is also interesting that the empty-core model 
potential proposed by Ashcroft produces an interatomic potential which is almost 
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coincident with the QHNC one as denoted by the full circles in figure 1, if the core 
radius R, is taken to be Q905 A [15]; this core radius generates almost the same 
p( Q )  as the QHNC e l e m n  screening of a pseudoatom as is shown in figure 5. The 
chain curve in figure 1 is the result calculated by Perrot and March 1141 based on 
the jelliun-vacancy model; their potential, however, shows a disagreement with the 
QHNC one, and then they [ZO] propwe the scaled potential weR(pr) using a constant 
p = 0.9564 to get a better fit to that extracted by Reatto er al. The interatomic 
potential calculated by Rasolt and l3ylor [l], though at a slightly ditferent r,, is much 
shallow at the minimum with a value of -2 x Ryd, but its minimum position 

M Ishilobi and J Chiham 

coincides with the QHNC potential. 

I I 

Fiiure t Ion-ion StmctUE factor 
Str(Q) for liquid sodium a1 l W T ,  
obtained bj the QHNC calculation (full 
cume). "paring with x-ray mperi- 
ment results of Greenfield 0 ol 1161 
(crosses) and 01 Huijben and van der 
b g t  [zl] (hii circles). The o p n  dr- 
cler indicale a small deviation of the 
mul l  of lhe pseudopotential method 
from the QHNC structure factor. 

Next, we display in figure 2 the ion-ion structure factor S,,(Q) by the full curve, 
which is obtained from the modified HNC equation with 7 = 0.468 for the QHNC 
interatomic potential shown in figure 1. Our full consistently calculated Structure 
factor shows an excellent agreement with the experimental results of Huijben and 
van der Lugt [21] denoted by full circles and of Greenfield et ai [I61 plotted by 
crosses; the first peak of our result is slightly higher than that of Greenfield ef a1 
and lower than that of Huijben and van der Lugt, and the second peak deviates 
to the higher side compared with the experiments, however. The Same difference 
of the peak height from the experiment is seen in the structure factor obtained by 
Perrot and Chabrier 1201 using the scaled potential. In addition, the structure factor 
calculated by the modified HNC equation with 7 = 0.471 for a potential from the 
Ashcroft pseudopotential becomes almost identical with the QHNC result with quite 
small difference in the first peak as is shown by open circles in figure 2 Also, the 
structure factor S,,(O) at zero wavevector, which is related with the compressibility, is 
obtained as 0.031 by the QHNC calculation, while the structure factor S,,(O) from the 
Ashcroft potential is 0.029; these values are to be compared with the experimental 
ones: 0.024 (Greenfield ef ul ) and 0.026 (Huijben and van der Lugt). 

Figure 3 shows the ion-ion RDFS g , , ( r )  obtained from the inverse Fourier trans- 
form of the structure factors of figure 2 The RDF from our self-consistent calculation 
represented by the full curve is compared with the RDF obtained from the experimen- 
tal structure factor by Huijben and van der Lugt (full circles) and the Monte Carlo 
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r / a  

Figure 3. Ion-ion ladial distribution 
functions g n ( r )  for liquid wdium 
at 1WT, calculated by the QHNC 
method (full a w e )  and the Monte 
Carlo method p2] (ROSXS), mm- 
pared with lhe experimental one [21] 
(Cull circles). The open circles are 
plotted to show lhe small difference 
between the results of the peudopo- 
lential and QHNC methods. 

RDF of Murphy and Klein 1221 (denoted by the crosses) of which Fourier transform 
gives the structure factor in good agreement with that measured by Greenfield et a1 
[16]. Similarly to S,,(Q) in figure 2, the RDF obtained by the modiEed HNC for a 
potential based on the Ashcroft potential is almost equal to the QHNC RDF; a small 
deviation is Seen near the first peak as shown by the open circles. 

Q POgure 4 Charge distributions p(r) 
of a neutral pseudoatom in liq- 
uid sodium, calculated by the Q N C  
method (fuU a w e )  and the Feu-  
dopotential method (full cirrles), 
in amparison with the 3-bound- 
electmn density (chain awe) in a 
kee atom. The broken a w e  rep- 
resents the experimental result [U]. 

2 0 I '  
r / a  

In figure 4, we show the valenceelectron distribution of a neutral pseudoatom 
p(r ) ,  calculated by the QHNC (the full curve) and pseudopotential (full circles) meth- 
ods, in comparison with the experiment result (the broken curve) and the %-bound- 
electron density (the chain curve) of a bee atom. The QHNC p( .) plotted by the 
full curve shows quite similar behaviour to the 3s-bound-electron density of a free 
atom near its second node and outside the core region. In the QHNC p ( r ) ,  there are 
two dips near the same positions where the 3s-bound-electron density of a free atom 
has two nodes, as is displayed in figure 5, where r2p( r )  is plotted in units of a2n0 
for the vertical axis. In figure 4, the density p( T-) determined by the linear response 
with the use of the Ashcroft potential is plotted by the full circles, which shows good 
agreement with the QHNC screening density outside the core region. This agreement 
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can be seen more clearly in figure 6, which indicates that the QHNC screening density 
p( Q) is almost identical with the peudopotential p( Q) in the Fburier-transformed 
expression of p ( r ) .  In other words, we can interpret this fact as meaning that the 
parameter R, in the Ashcroft model potential has been chosen so as to produce 
precisely the non-linear screening. On the other hand, Tikeda d al [U] extracted 
the screening charge p( r )  of a pseudoatom in Liquid Na &om the difference between 
structure factors measured by x-ray and neutron diffraction experimene their result 
denoted by the broken curve behaves differently from the calculated results. 

M hhirobi and J Chihara 

r / a  
Figure 5. The pseudoatom radial density +p(r)  in liquid sodium, obtained by lhe QHNC 
method (full “e) in mmparison with the ?+bound-electron radial density of a k c  
sodium atom 

P&um 6. Fourier-transformed charge distributions p ( Q )  of a pseudoatom in liquid 
sodium: Full CUNe, the OHNC method; full circles. the pseudopotential method; chain 
me, the Fourier rransform of the 3s-bound-electron density of a free atom. me 
a w n m e n t a l  mult [U] is plotted by the bmken a”. 
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Moreover, figure 7 indicates that the electron-ion RDF gel( v) from the experiment 
by Takeda er a1 [SI, plotted by the broken curve, shows a quite different behaviour 
from thase calculated by the QHNC (the full curve) and pseudopoteutial (the full 
circles) methods, while the RDF g e I ( r )  based on the Ashcroft potential becomes 
identical with the QHNC geI ( r )  outside of the core-region. In particular. the electron- 
ion structure factor S,(Q) obtained by the experiment (full circles) seems to have 
no common feature to the calculated S,,(Q) in figure 8 The QHNC geI(r), which is 
determined as the valenceelectron distribution around a fixed nucleus at the origin, 
has also two dips at r/u - 0.05 and 0.27, corresponding to the dips of p(v) in 
figure 5. The inner dip is not plotted in this figure due to its large value gel - 2.4. 
These dips can be associated with the existence of the bound electrons in an ion. 
According to Perrot and March 141, each average of square of the distance of the 
orbitals of bound electrons, d? +)/a, is 0.04 for Is, 0.22 for 2s and 0.23 for 2p state 
in units of the average ion distance a; the outer and bigger dip in the QHNC gel(.) 
comes from the repulsion by Pauli's principle due to eight electrons in the 2s and 
2p states, and the inner and smaller dip is ascribed to the core repulsion due to 
two electrons in the 1s state. On the other hand, the dip in the experimental g e I ( r )  
is near 4.8, however. Therefore, it is appropriate to think that this disagreement is 
caused by an inaccuracy in the experiment. 

r / a  
Figure 7. Electron-ion radial distribution functions &,(P) for liquid sodium: h l l  
curve, the QHNC method, full drcles. lhe pudopotential method; broken "e, lhe 
experimental nsult [SI. 

5. Conclusion and discussion 

It is shown that the whole electronic and ionic correlations of liquid metallic sodium 
at temperature 100T can be determined by the QHKC formulation on the basis 
of the nucleus-electron model using atomic number 2, as only input data. The 
electronic structure of an ion in a liquid state is also determined in a consistent way 
to the surrounding ionic and electronic structure; the selfconsistent potential @(r)  
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a (a-', 
Figun S Elearon-ion structure factor S.l(Q) ol liquid sodium, calculated ty the QHNC 
method (full curve) in mmparison with the extracted result h m  the difference between 
the neutron and x-ray aperimenu [SI (full arcles). 

under the circumstance supports only three bound energy levels (ls,2s,2p), which is 
consistent with the ionic charge being Z, = 1 due to a delocalized 3s electron. 

In this formulation, the RDF gel(?-) gives the screening cloud p(v )  which contains 
information of a non-linear pseudopotential w; ' (Q)  E -C,,(Q)/p, which deter- 
mines the effective interatomic potential .''(?-) to yield the ion-ion RDF gIl(v); 
thus, all these quantities are obtained simultaneously in a self-consistent manner. 
The ionic structure, S,,(Q) and g,,(?-), calculated from the QHNC formulation show 
excellent agreement with the experimental results, as shown in figures 2 and 3. How- 
ever, the electronic structures represented by p( r) and geI(?-)  as well as their Fourier 
transforms, p ( Q )  and Ser(Q), show a great difference between the theoretical and 
experimental results, as is seen from figures 4 to 8. 

In this calculation, the LFC G(Q) and the exchangexorrelation potential p x C ( v s )  
are introduced from outside the QHNC formulation. In this mnnection, it is well 
hown that the W c  C( Q) plays a critical role in the determination of an interatomic 
potential U''(?-) [15,24]. However, it should be noted that to date there is no 
criterion by which to judge beforehand which LFC is better for the evaluation of 
veff(?-), since the wc G(Q) involved in the expression for U''(.) of (17) is the LFC 
of the ion-electron mixture, which is different &om the jellium LFC for which we have 
some howledge of the conditions to be fulfilled. 'lb take account of the influence of 
ions on the Wc, it is necessary to set up another equation for CJT), as was done in 
the calculation of liquid metallic hydrogen [2]. In any case, the steep repulsive part 
of v''(r), which essentially determines the ion-ion RDF, may remain unaltered as is 
calculated in figure 1, where the QHNC potential coincides with that extracted from 
the experimental structure factor by Reatto a a1 [I71 in the repulsive mre region. 
In addition, the scaled potential introduced by Perrot and Chabrier [ZO] to fit the 
potential of Reatto e! a1 [17] is shown to agree with the QHNC interatomic potential 
near the repulsiveare region with the same position of potential minimum. 

It is interesting that the Ashcroft pseudopotential with a core radius R, = 
0.905 8, can yield the Fourier-transformed screening cloud p ( Q )  which coincides 
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with the QHNC p(Q) in figure 6; consequently, there is no essential difference be. 
tween the effective interatomic potentials and the ion-ion and electron-ion RDFS, 
whether they are calculated by the QHNC or preudopotential method. This fact 
makes a strong contrast with the case of liquid lithium 14.1, where the Ashcroft model 
potential does not work well. This indicates that liquid sodium is the typical system 
of a simple metal, where the pseudopotential theoly can be applied successfully if the 
non-linear screening effect is taken into a m u n t  properly. 

In contrast to the ionic structure, the electronic structure such as p( T) and ger( r )  
do not show any agreement between theoretical and experimental results, as shown 
in figures 4-8. In the Q m c  formulation, the electronic structure p( T) determines the 
effective interatomic potential, as it is understood from the relation: 

Pv'"(Q) = PvILQ) - dQ)c,i(Q) (39) 

to give the RDF glI( r), which shows an excellent agreement with the experimental 
results. Also, the QHNC gel( r) and p( r )  have an innercore structures similar to a 3s 
bound state of a free atom. As a consequence, these facts can be taken as indications 
that our result for the electronic structure is calculated correctly. In contrast to the 
calculation, the correlation in the experimental gel(.) persists over too long a range 
to produce a proper atomic interaction by (39) with the use of p( Q) determined by 
the relation (6). Therefore, we are forced to demand that the experiment to extract 
the RDF geI(r) should be performed with more precisicn both for the neutron and 
x-ray diffraction. 

Finally, it should be remembered that the QHNC formulation with four approx- 
imations in the present work can only be applied to a simple metal, where the 
core-overlap is negligible and there is no resonant state; to take amount of these 
contributions, the multi-centre problem to evaluate a core-overlap effect must be 
solved in a coupled manner with the single-centre problem to determine the RDFs 
1251. 
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